Fields Reborn

Abstract

The countryside needs vision, not pity. This article introduces a systemic simulation model to explore policy combinations that can drive rural sustainability. It integrates water, forage, livestock, and human well-being, allowing users to simulate the impact of innovations like **non-selective regenerative grazing**, which restores soils, breaks pest cycles, and reduces feed dependency. This tool empowers governments, producers, and businesses to **envision viable pathways to a thriving**, **fertile**, **and resilient countryside** through systemic modeling.

Jun 12, 2025

Keywords

system dynamics simulation; rural sustainability; regenerative policies; non-selective regenerative grazing; soil restoration; agro-livestock well-being; integrated water management; agricultural innovation; systemic thinking; dynamic modeling.

Table of contents:

Introduction	5
om Soil to Wellbeing: A Story of Systemic Regeneration	5
ıral Renewal: A Systemic Story of Regeneration	6
When Water Runs Low, the Whole System Shakes	6
Model table - water sector	7
Name: WAG (Water Availability for Grass)	8
Name: Water consumed per capita	9
Name: Water consumed per cattle	9
Regenerating Soil, Sowing Hope	10
Tabla del modelo – Sector Pasto	10
Name: Grass consumed per cattle	11
Name: Regen time	11
Regenerative Cattle Systems: balancing life, resources, and abundance	12
Model table – Animal Sector.	13
Name: Effect of water av on cattle waste	14
Name: Effect of water av on cattle growth	14
Name: Effect of grass av on cattle waste	15
Name: Effect of grass av on cattle growth	15
Population and Prosperity: the human mirror of balance between food, water, and ho	pe16
Model table – Population Sector	17
Name: Water availability effect	18
Name: Effect of food av on deaths	19
Name: Effect of food av on births	19
e Crystal Ball of a Sustainable Future: Simulate before deciding, visualize before acting	g20
■ Table 1. Policy Summary Table	20
Table 2. Policy Examples: When to Apply	21
System Behavior Under Policy Activation and Water Allocation Scenarios	22
6 Systemic Reflection: When Intuition Fails in the Face of Complexity	23
odel Registration & Settings	24
Metadata in English	24
Conclusion: From Confusion to Clarity — Leading with Systemic Vision	25

References

Table of figures:

Figure 1: : Systemic causal loop diagram of the interaction between water, land, livestock, and	d
human populationhuman population	6
Figure 2: Surface and groundwater dynamics: rainfall capture, runoff, aquifer recharge, and	
extraction for human and livestock use	7
Figure 3: Sector del pasto: dinámica de regeneración vegetal conectada con la disponibilidad	de
agua y la salud del suelo	.10
Figure 4: Cattle Sector: herd dynamics regulated by water and grass availability per animal	.13
Figure 5: Population Sector: births, deaths, and life expectancy shaped by per capita access to)
food and water	.17
Figure 6: Full dynamic simulation model. It connects water, grass, cattle, and human population	on
through feedback loops. Policies can be activated to explore sustainable or unsustainable	
scenarios before implementation in the real world	.22
Figure 7: Water Allocated Exclusively to Livestock	.22
Figure 8: Water Allocated Exclusively to Livestock	.23
Figure 9: Water Shared – 30% for Human Use, 70% for Livestock	.23
Figure 10: Model settings: Temporal and simulation parameters (duration, time steps, and	
interactivity options) that govern the run	.24
Figure 11:Model registration: Key metadata (title, author, date, and keywords) to categorize	
and locate the model	.24

Introduction

Sustainability in rural regions cannot be achieved through isolated interventions. It demands a deep understanding of the complexity within agro-ecosystems and the web of decisions that shape the well-being of land, livestock, and people. This article introduces a systemic simulation model that integrates essential components of an agro-livestock system: groundwater and surface water management, pasture regeneration as feed, livestock and human population dynamics, and the implementation of forward-looking policies.

One of the central innovations explored is **non-selective regenerative grazing**, a transformative practice that restores soil fertility by mimicking herd behavior through rotational grazing with electric fences. This approach revitalizes land, enhances rainfall absorption, disrupts pest cycles such as ticks, and dramatically reduces dependence on costly external feed.

System dynamics simulators empower users to visualize scenarios, uncover feedback effects, and test policy combinations that may lead to sustainable outcomes. This work aims to inspire decision-makers, agricultural entrepreneurs, and educators by demonstrating how systemic thinking and dynamic modeling can foster a regenerative, resilient, and prosperous future for rural communities.

From Soil to Wellbeing: A Story of Systemic Regeneration

This is the story of a ranch on the edge of collapse. Degraded soils, sick animals, struggling families, and the never-ending burden of buying external feed made life in the countryside increasingly unsustainable.

But this is not a story of loss — it's a story of **discovery**.

Through a systemic lens, the ranchers learned to **see the invisible connections** between water, grass, animals, and people. They adopted a powerful innovation: **non-selective regenerative grazing**, supported by smart water management and ecosystem-based policies.

This transformation wasn't random — it was guided by the use of a **system dynamics simulation model**, allowing them to explore decisions and their long-term impacts before acting.

What follows is a journey of renewal. A story that reminds us that understanding systems might be the key to regenerating our land... and our future.

Rural Renewal: A Systemic Story of Regeneration

When hope seemed to dry up, a group of ranchers realized they didn't need external fixes — they needed a new way to see their own system. Guided by a system dynamics simulation model, they began to explore regenerative policies that reshaped their relationship with water, soil, cattle, and community. This is a story of how systemic thinking can help rural landscapes flourish.

When Water Runs Low, the Whole System Shakes

For years, rain had been unpredictable. Sometimes it poured, other times not a drop. In the midst of growing desertification, ranchers watched their wells go deeper, their pastures dry out, and their cattle weaken. But everything began to change the day they chose to look at the whole system: water wasn't just a resource — it was the pulse that kept the land, animals, and community alive. They realized that by retaining rainwater on the surface, regenerating plant cover, and managing wells wisely, they didn't just recover water — they recovered hope. This sector models three main water sources and flows:

- Rainfall as a stochastic input (historical data or synthetic generation).
- Surface Storage as the main water stock retained by the soil.
- Ground water as a backup source, with energy cost for extraction.

Nonlinear relationships — such as water availability's effect on cattle health and human well-being — were implemented via **soft converters (lookup functions)** modeling hydric stress. The associated image visualizes feedback loops showing how water influences the overall system resilience.

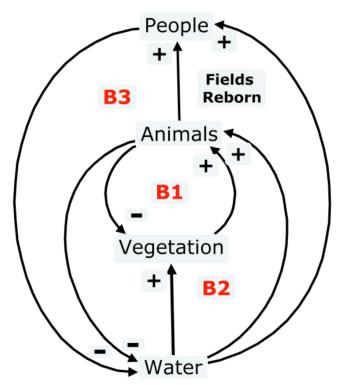


Figure 1:: Systemic causal loop diagram of the interaction between water, land, livestock, and human population.

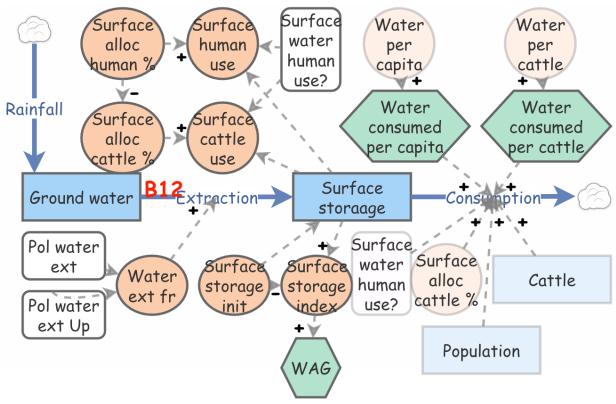


Figure 2: Surface and groundwater dynamics: rainfall capture, runoff, aquifer recharge, and extraction for human and livestock use.

Model table - water sector

No	Tipo	Name	Formula / Value	Units
1	Stock	Ground water	Initial value: 500	Water
2	Stock	Surface storaage	Initial value: [Surface storage init]	Water
3	Flow	Rainfall	100	Water/
				Year
4	Flow	Extraction	[Ground water]*[Water ext fr]/100	Water/
				Year
5	Flow	Consumption	if [Surface water human use?] then	Water/
			([Cattle]*[Water consumed per	Year
			cattle]*[Surface alloc cattle	
			%]/100)+([Population]*[Water consumed	
			per capita]*(100-[Surface alloc cattle	
			%])/100)	
			else	
			([Cattle]*[Water consumed per cattle])	
			end if	
6	Variable	Surface storage init	100	Water
7	Variable	Surface storage index	[Surface storaage]/[Surface storage init]	Unitless

8	Variable	Water ext fr	20*(1+Ifthenelse([Pol water ext Up],1,-	1/Year
		1)*Ifthenelse([Pol water		
			ext],1,0)*(step(2,100/100)))	
9	Variable	Surface alloc human %	30 (Slider Min=20, Step=1, Max=60)	Unitless
10	Variable	Surface alloc cattle %	100-[Surface alloc human %]	Unitless
11	Variable	Surface human use	[Surface storaage]*[Surface alloc human %]	Water
12	Variable	Surface cattle use	if [Surface water human use?] then [Surface storaage]*[Surface alloc cattle %]/100 else [Surface storaage] End if	Water
13	State	Surface water human use?	True - Show value toggle (Active)	Unitless
14	State	Pol water ext	True - Show value toggle (Active)	Unitless
15	State	Pol water ext Up	True - Show value toggle (Active)	Unitless
16	Ghost	Grass per cattle		
17	Ghost	Water per capita		
18	Ghost	Surface water human use?		
19	Ghost	Surface alloc cattle %		
20	Ghost	Cattle		
21	Ghost	Population		

Name: WAG (Water Availability for Grass)

Type: Converter Interpolation: Linear

Unit: Unitless

Input source: Surface storage index

WAG	Surface storage index	WAG
	0	0
Add a note	0.2	0.3375
	0.4	0.5775
Input Source	0.6	0.7575
Surface storage index 🔻	8.0	0 0.8925
	1	1
	1.2	1.08
	14	1.155
	1.6	1.215
	1.8	1.26
	2	1.3

Name: Water consumed per capita

Type: Converter Interpolation: Linear

Unit: Unitless

Input sourcce: Water per capita

Water consumed per	Water per capita	Water consumed per capita
	0	0
	0.2	0.27
Add a note	0.4	0.51
- Input Course	0.6	0.7125
□ Input Source Water per capita ▼	8.0	0.87
vvator por capita	1	1
	1.2	1.1025
	1.4	1.1925
	1.6	1.2525
	1.8	1.2825
	2	1.2975

Name: Water consumed per cattle

Type: Converter Interpolation: Linear

Unit: Unitless

Input sourcce: Water per cattle

Water consumed per	Water per cattle	Water consumed per cattle
	0	0
	0.2	0.27
Add a note	0.4	0.51
Input Source	0.6	0.7125
Water per cattle ▼	8.0	0.87
	1	1
	1.2	1.1025
	1.4	1.1925
	1.6	1.2525
	1.8	1.2825
	2	1.2975

Regenerating Soil, Sowing Hope

Soil health is the silent engine of every productive ecosystem. From surface water storage arises the **Water Availability for Grass (WAG)** — a key link between the water cycle and plant growth. This availability shapes the **Grass Growth Capacity (Grass Cap)**, and when combined with **Grass Health**, it activates a **regenerative reinforcing loop**: the healthier the grass, the **faster and more effectively it recovers**, increasing biomass for grazing, improving soil cover, and enhancing moisture retention.

This sector highlights how policies based on **rotational paddock rest**, **natural fertilization through animal waste**, and the strategic implementation of **non-selective regenerative grazing** become **key systemic levers** to unleash the land's self-healing potential.

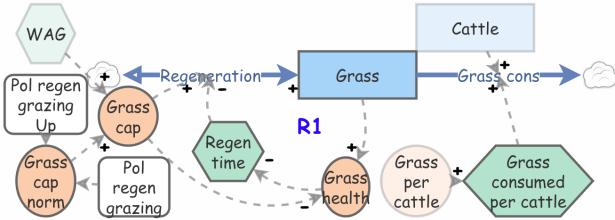
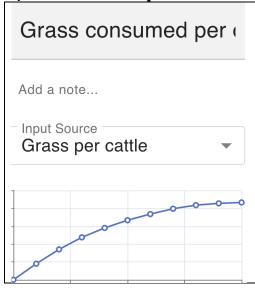


Figure 3: Sector del pasto: dinámica de regeneración vegetal conectada con la disponibilidad de agua y la salud del suelo.

Tabla del modelo – Sector Pasto

No	Туре	Name	Fprmula / Value	Units
1	Stock	Grass	Initial value: 100	Grass
2	Flow	Regeneration	([Grass cap]-[Grass])/[Regen time]	Grass/
				Year
3	Flow	Grass cons	[Grass consumed per cattle]*[Cattle]	Grass/
				Year
4	Variable	Grass cap norm	200*(1+Ifthenelse([Pol regen grazing	Grass
			Up],1,-1)*Ifthenelse([Pol regen	
			grazing],1,0)*step(2,50/100))	
5	Variable	Grass cap	[Grass cap norm]*[WAG]	Grass
6	Variable	Grass health	([Grass]/[Grass	Unitless
			cap])/(fix([Grass])/fix([Grass cap]))	
7	State	Pol regen grazing	False - Show value toggle (Active)	Unitless
8	State	Pol regen grazing Up	True - Show value toggle (Active)	Unitless
9	Ghost	Grass per cattle		
10	Ghost	WAG		


11	Ghost	Cattle		
----	-------	--------	--	--

Name: Grass consumed per cattle

Type: Converter Interpolation: Linear

Unit: Unitless

Input sourcce: Grass per cattle

Grass per	Grass consumed per cattle
cattle	
0	0
0.2	0.27
0.4	0.510
0.6	0.7125
8.0	0.870
1	1
1.2	1.1025
14	1.1925
1.6	1.2525
1.8	1.2825
2	1.2975

Name: Regen time

Type: Converter Interpolation: Linear

Unit: Unitless

Input source: Grass health

Regen time
Add a note
Input Source Grass health ▼

Grass	Regen time	
health		
0	1 0	
0.2	4.75	
0.4	3	
0.6	1.92	
8.0	1.4	
1	1	
1.2	0.75	
1.4	0.6	
1.6	0.525	
1.8	0.5	
2	0.5	

Regenerative Cattle Systems: balancing life, resources, and abundance

This sector models the dynamics of cattle growth and decline as a systemic function of two limiting resources: Water per Cattle and Grass per Cattle. These ratios generate two key balancing feedback loops (B1 between Cattle & Grass and B2 between Cattle & water), which self-regulate herd size based on ecosystem capacity.

Both indicators directly affect the **Growth** and **Waste** flows of the herd, creating opportunities for **adaptive policy design**. These policies can be structured into two core strategies:

Policies to foster cattle growth:

- **Improve water availability and quality**, through rainwater harvesting, mobile watering points, or managed access to natural sources.
- **Increase grass biomass**, by implementing regenerative rotational grazing that enhances pasture recovery.
- Breed and manage resilient cattle, suited to local climate conditions.
- Monitor cattle body condition, to support real-time decision-making.
- **Train producers** in regenerative practices and data-driven herd management.

Policies to reduce cattle loss or waste:

- Prevent overgrazing and adjust herd size dynamically, especially during dry seasons.
- **Control diseases and pests**, via pasture rotation, natural tick control, and improved biosecurity.
- Provide shade and shelter, to reduce heat stress.
- Create forage reserves or protein banks, to maintain herds during scarcity.
- Improve transport and handling logistics, to avoid deaths from accidents or high stress.

The **Food** variable emerges as a positive output connecting this sector with the **Human Population** sector (Step 4), reinforcing a vital loop between livestock, food security, and community wellbeing.

This sector urges us to reframe cattle not as an endpoint, but as a **living interface between soil, water, and human life**, whose thoughtful management can regenerate ecosystems and sustain rural livelihoods.

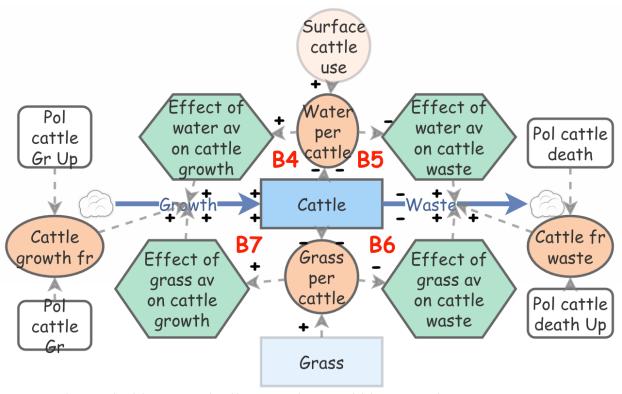
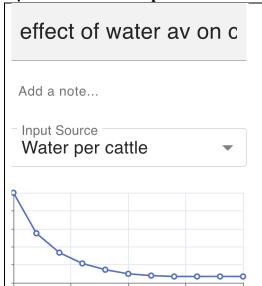


Figure 4: Cattle Sector: herd dynamics regulated by water and grass availability per animal.

Model table – Animal Sector.


No	Туре	Name	Fprmula / Value	Units
1	Stock	Cattle	Initial value: 100	Cattle
2	Flow	Growth	([Cattle]*[Cattle growth fr]*[effect of	Cattle/
			water av on cattle growth]*[Effect of	Year
			grass av on cattle growth])/100	
3	Flow	Waste	[Cattle]*[Cattle fr waste]*[effect of grass	Cattle/
			av on cattle waste]*[effect of water av	Year
			on cattle waste]	
4	Variable	Cattle growth fr	10*(1+Ifthenelse([Pol cattleGr Up],1,-	1/Year
			1)*Ifthenelse([Pol	
			cattleGr],1,0)*step(2,20/100))	
5	Variable	Cattle fr waste	.1*(1+Ifthenelse([Pol cattle death Up],1,- 1/Year	
			1)*Ifthenelse([Pol cattle	
			death],1,0)*step(2,20/100))	
6	Variable	Water per cattle	([Surface cattle	Water/
			use]/[Cattle])/(fix([Surface cattle	Casttle
			use])/fix([Cattle]))	
7	Variable	Grass per cattle	[Grass]/[Cattle] Grass/	
				Casttle
8	State	Pol cattle Gr	True - Show value toggle (Active)	Unitless
9	State	Pol cattle Gr Up	True - Show value toggle (Active)	Unitless

10	State	Pol cattle death	True - Show value toggle (Active)	Unitless
11	State	Pol cattle death Up	True - Show value toggle (Active)	Unitless
12	Ghost	Grass		
13	Ghost	Surface cattle use		

Name: Effect of water av on cattle waste

Type: Converter, Interpolation: Linear, Unit: Unitless

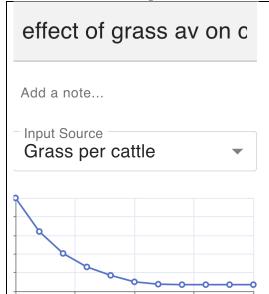
Input sourcce: Water per cattle

Water per cattle	Effect of water av on cattle waste
0	1 0
0.2	5.5
0.4	3.35
0.6	2.15
8.0	1.45
1	1
1.2	8.0
14	0.7
1.6	0.7
1.8	0.7
2	0.7

Name: Effect of water av on cattle growth

Type: Converter, Interpolation: Linear, Unit: Unitless

Input sourcce: Water per cattle

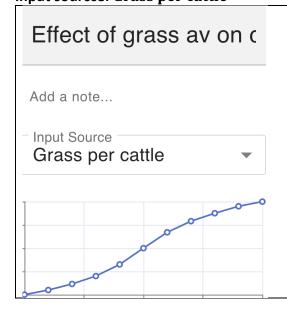

effect of water av on c
Add a note
□ Input Source Water per cattle ▼

Water per	Effect of water av on cattle		
cattle	growth		
0.0	0		
0.5	0.62		
1.0	1		
1.5	1.28		
2.0	1.48		
2.5	1.64		
30	1.76		
3.5	1.86		
4.0	1.93		
4.5	1.97		
5.0	2		

Name: Effect of grass av on cattle waste

Type: Converter, Interpolation: Linear, Unit: Unitless

Input source: Grass per cattle



Grass per	Effect of grass av on cattle
cattle	waste
0	1 0
0.2	6.4
0.4	4.05
0.6	2.6
8.0	1.7
1	1
1.2	0.75
14	0.7
1.6	0.7
1.8	0.7
2	0.7

Name: Effect of grass av on cattle growth

Type: Converter, Interpolation: Linear, Unit: Unitless

Input source: Grass per cattle

Water per	Effect of grass av on cattle
cattle	growth
0.0	0
0.2	0.1
0.4	0.23
0.6	0.40
8.0	0.65
1.0	1.0
1.2	1.34
1.4	1.58
1.6	1.75
1.8	1.90
2.0	2.00

Population and Prosperity: the human mirror of balance between food, water, and hope

The population sector represents the human dimension of the system, tightly linked to the availability of key life-sustaining resources: **food** and **water**. Two critical indices emerge here:

- **Food per capita**: measures the food produced (from cattle) available per person. It has a direct impact on **birth and death rates**, generating **internal balancing loops** that regulate population size under nutritional constraints.
- Water per capita: represents water available per person, and links the population sector with the water sector, forming a major balancing loop (B3) that reflects the strain or abundance of water resources. This index also affects both birth rates and life expectancy, shaping overall well-being and system resilience.

These two indices act as **socioecological thermometers**, showing how decisions made in upstream sectors (water, grass, cattle) ultimately influence human health, dignity, and the system's long-term viability.

E Key dynamics and policy areas:

- **If Food per capita increases**, births rise and deaths from undernutrition decline, improving health outcomes.
- If Water per capita declines, health conditions may deteriorate, increasing mortality and reducing birth rates a balancing response.
- **Life expectancy** emerges as a sensitive outcome variable, modulated by access to food and water.

X Suggested policy approaches:

- Improve potable water infrastructure and delivery.
- Invest in efficient water use and community-based water capture systems.
- Strengthen local, resilient food systems.
- Promote preventative healthcare and nutritional education.
- Ensure equitable access to basic resources as a human right.

This sector closes the loop but also reveals the **ultimate purpose of the system**: to enable human life to thrive in balance with nature.

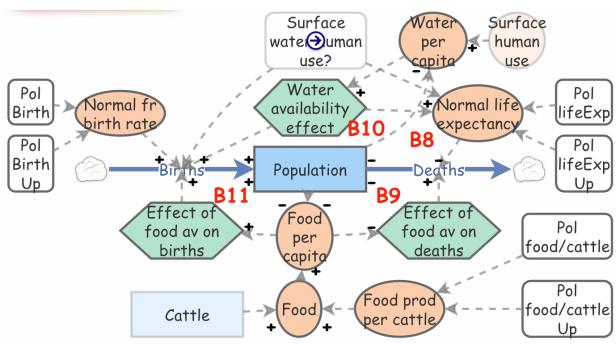
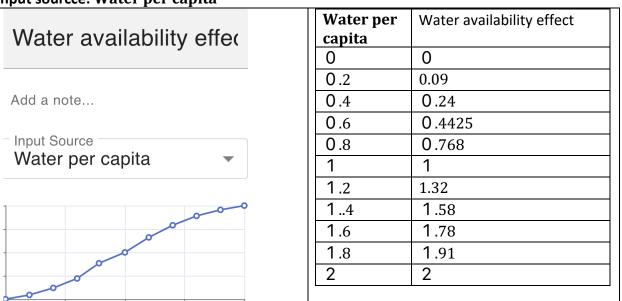


Figure 5: Population Sector: births, deaths, and life expectancy shaped by per capita access to food and water.

Model table – Population Sector.


No	Туре	Name	Fprmula / Value	Units
1	Stock	Population	Initial value: 100	People
2	Flow	Births	[Population]*[Normal fr birth	People/
			rate]*[Effect of food av on	Year
			births]*(ifthenelse([Surface water human	
			use?],[Water availability effect],1))	
3	Flow	Deaths	([Population]/[Normal life	People/
			expectancy])*[Effect of food av on	Year
			deaths]	
4	Variable	Normal fr birth rate	0.05*(1+Ifthenelse([Pol birth Up],1,-	1/Year
			1)*Ifthenelse([Pol	
			birth],1,0)*step(2,50/100))	
5	Variable	Normal life expectancy	25*(ifthenelse([Surface water human Year	
			use?],ifthenelse([Water availability	
			effect]>0,[Water availability	
			effect],1),1))*(1+Ifthenelse([Pol lifeExp	
			Up],1,-1)*Ifthenelse([Pol	
			lifeExp],1,0)*step(2,60/100))	
6	Variable	Water per capita	([Surface human Wate	
			use]/[Population])/(fix([Surface human People	
			use])/fix([Population]))	

7	Variable	Food prod per cattle	prod per cattle 1*(1+Ifthenelse([Pol food/cattle Up],1,-	
			1)*Ifthenelse([Pol	Casttle
			food/cattle],1,0)*step(2,20/100))	
8	Variable	Food	[Cattle]*[Food prod per cattle]	Food
9	Variable	Food per capita	[Food]/[Population]	Food/
				People
10	State	Pol Birth	False - Show value toggle (Active)	Unitless
11	State	Pol Birth Up	True - Show value toggle (Active)	Unitless
12	State	Pol lifeExp	True - Show value toggle (Active)	Unitless
13	State	Pol lifeExp Up	True - Show value toggle (Active)	Unitless
14	State	Pol food/cattle	True - Show value toggle (Active)	Unitless
15	State	Pol food/cattle Up	True - Show value toggle (Active)	Unitless
16	Ghost	Cattle		
17	Ghost	Surface water human use?		
18	Ghost	Surface human use		

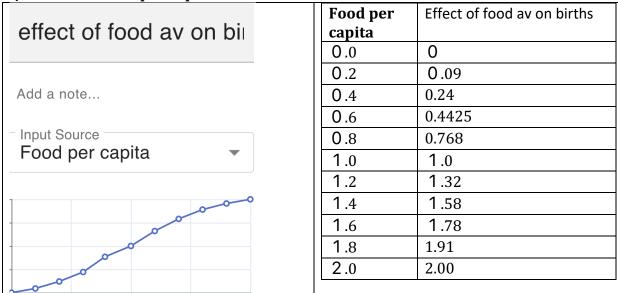
Name: Water availability effect

Type: Converter, Interpolation: Linear, Unit: Unitless

Input sourcce: Water per capita

Name: Effect of food av on deaths

Type: Converter, Interpolation: Linear, Unit: Unitless


Input sourcce: Food per capita

Effect of food av on de	Food per capita	Effect of food av on deaths
	0	1 0
Add a note	0.2	6.15
	0.4	3.7
Input Source	0.6	2.3
Food per capita	8.0	1.55
	1	1
9	1.2	0.6
	14	0.5
	1.6	0.5
	1.8	0.5
~~~~	2	0.5

#### Name: Effect of food av on births

Type: Converter, Interpolation: Linear, Unit: Unitless

Input sourcce: Food per capita



# The Crystal Ball of a Sustainable Future: Simulate before deciding, visualize before acting

Imagine having a **living crystal ball** in front of you—one that doesn't predict the future magically, but through the logic of interconnected systems and dynamic simulation. This model is a **powerful tool** for strategic decision-making. It allows you to **activate policies**, adjust water allocation, test regenerative strategies, and **observe in real time how your decisions shape the system over time**.

This is not just a model—it is a **space for visioning**. Here, you can:

- Explore **feedback loops** between water, grass, cattle, and human population.
- Simulate policies before implementing them in the real world.
- Identify both **intended and unintended consequences** of any intervention.
- Evaluate scenarios of sustainability or collapse.
- Visualize long-term outcomes and adjust strategies accordingly.

The starting point is a **binary policy** (Surface water human use?) that activates or deactivates the allocation of surface water for human consumption. Once activated, the model opens a slider (Surface alloc human %) where you can allocate **between 20% and 60%** of water for humans, with the rest going to cattle. This simple choice can **change the destiny of the entire system**.

From there, other policies can be activated or adjusted at any time to test their influence on the sustainability of the model.

## ■ Table 1. Policy Summary Table

Policy naming convention clarification:

- The variable Pol [policy name] is a **boolean switch** to activate the policy.
- The variable Pol [policy name] Up defines the direction of change:
  - true means the policy is applied to increase the variable.
  - o false means the policy is applied to **decrease** the variable.

No	. Sector	Affected Variable	Policy Switch (Boolean)	Policy Direction (true = Up, false = Down)	Description
1	Water	Water ext fr	Pol water ext	Pol water ext Up	Change the fraction of water extracted from the environment.
2	Water	Surface water human use?	Surface water human use?	_	Activates water allocation for human use.

No.	Sector	Affected Variable	Policy Switch (Boolean)	Policy Direction (true = Up, false = Down)	Description
3	Water	Surface alloc human %	_	_	Slider that defines what % of water is for human use (20%–60%).
4	Grass	Grass cap norm	Pol regen grazing	Pol regen grazing Up	Apply regenerative non- selective grazing.
5	Cattle	Cattle growth fr	Pol cattle Gr	Pol cattle Gr Up	Improve cattle growth rate.
6	Cattle	Cattle fr waste	Pol cattle death	Pol cattle death Up	Decrease cattle death rate.
7	Population	Normal fr birth rate	Pol Birth	Pol Birth Up	Promote or control birth rate.
8	Population	Normal life expectancy	Pol lifeExp	Pol lifeExp Up	Increase or reduce life expectancy.
9	Population	Food prod per cattle	Pol food/cattle	Pol food/cattle Up	Increase food output per animal.

# 术 Table 2. Policy Examples: When to Apply

Policy	Use with true (个) – Increase	Use with false (↓) – Decrease
Pol water ext Up	To increase water supply in dry conditions.	To protect ecosystems by reducing water extraction.
Pol regen grazing Up	When restoring degraded land with regenerative methods.	Avoid if land requires rest and regrowth.
Pol cattle Gr Up	To boost livestock production in good seasons.	Avoid overpopulation of cattle when resources are tight.
Pol cattle death Up	To reduce mortality via veterinary services.	Decrease if population needs to be stabilized.
Pol Birth Up	To promote healthy population growth.	Decrease if resources per capita are limited.
Pol lifeExp Up	Invest in health and sanitation.	Decrease in extreme scarcity to reflect stress impacts.
Pol food/cattle Up	Improve dairy/meat productivity with technology.	Reduce to simulate scarcity or collapse in productivity.
Surface water human use?	Turn <b>on</b> when human needs must be prioritized.	Keep <b>off</b> when livestock must have priority.
Surface alloc human %	Adjust slider to 50–60% in public health crises.	Lower to 20% if cattle productivity is declining.

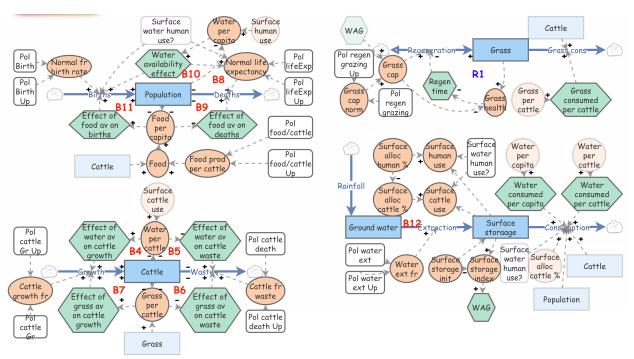



Figure 6: Full dynamic simulation model. It connects water, grass, cattle, and human population through feedback loops. Policies can be activated to explore sustainable or unsustainable scenarios before implementation in the real world.

#### System Behavior Under Policy Activation and Water Allocation Scenarios

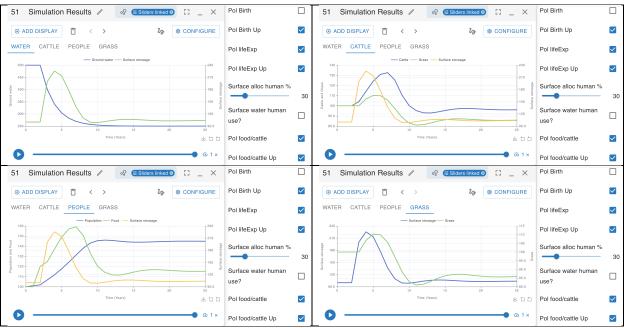
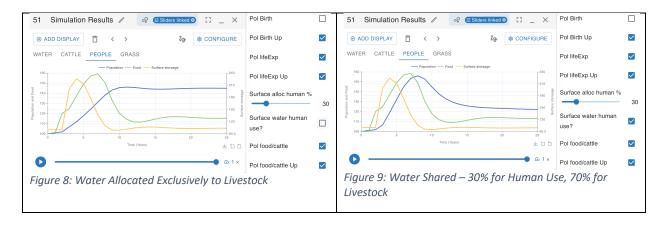




Figure 7: Water Allocated Exclusively to Livestock

In this scenario, surface water is allocated solely for livestock needs. The human population must rely on alternative sources, which affects population growth and well-being under certain policy configurations. System behavior highlights the resilience or fragility of grass, cattle, and

water stocks when policy combinations are activated without sharing water with human consumption.



Here, 30% of surface water is allocated for human use and 70% for livestock. This shared use scenario illustrates the system's adaptive capacity under more inclusive policies. While competition for water increases, coordinated interventions may stabilize population and cattle stocks without severely depleting grasslands or water resources.

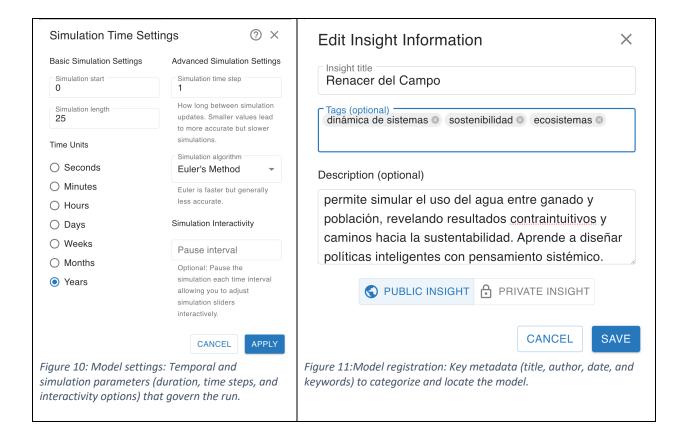
# **6** Systemic Reflection: When Intuition Fails in the Face of Complexity

At first glance, sharing water between humans and livestock seems like a fair and reasonable decision. Initially, the results appear to support that intuition: the population grows, the ecosystem responds, and everything seems to move in balance. However, when we observe the system's behavior over time, we discover a paradox: the scenario where water is shared ends up performing worse than the one where it's allocated solely to livestock.

#### Why?

Because in complex systems, the true causes of problems are often hidden beneath the surface. The WAG (Water availability for Grass) indicator, reflecting water availability for grass, acts as a thermometer for ecosystem water stress. As that stress rises — subtly at first — the grass's regenerative capacity declines, which in turn harms livestock health, reduces food production, and ultimately affects human well-being.

What seemed like an intuitive solution generates unintended consequences. This is a powerful reminder:


#### In interconnected systems, intuition often fails.

That's why we need new ways of thinking and acting.

**System Dynamics and Systems Thinking** offer tools to see beyond the obvious, anticipate long-term consequences, uncover hidden feedback loops, and explore truly sustainable policies — before implementing them in the real world.

**Modeling is like building an intelligent crystal ball:** it lets us sit in front of the future and ask, "What would happen if...?" — with the humility to accept that good intentions are not enough. We need clarity, foresight, and a mindset capable of learning from the whole, not just the parts.

# Model Registration & Settings



# Metadata in English

- **Title**: Modeling to See the Future: Water, Ecosystems, and Human Decisions in Complex Scenarios
- **Description**: Discover how a system dynamics model helps simulate water allocation between cattle and people, revealing surprising outcomes and sustainable strategies. Learn how to craft smarter policies using systems thinking.
- **Keywords**: system dynamics, modeling, sustainability, water, ecosystems, complex decisions, systems thinking, policy design, simulation, regeneration, land use, water stress, purpose-driven marketing
- Author: Systemic School, Pedro D. Almaguer Prado, Ramiro Luis Almaguer Navarro
- Date: June 2025
- Featured Image: Full model with water, grass, cattle, and population flowcharts
- Suggested CTA: Learn to build models that reveal the future. Join our next Introduction to System Dynamics course.

# 

In a world where uncertainty grows and challenges intertwine like hidden roots underground, solving problems in isolation is no longer enough. We must understand how the pieces fit together — how one decision in one area can ripple through the entire system, for better or worse.

This model is not just a tool.

It is a gateway to a new level of strategic awareness.

It is a **window into the future** — letting us see before we act, simulate without real-world risk, and discover sustainable paths **that intuition alone would never predict.** 

In the age of digital marketing, where decisions must be agile, creative, and impactful, systems thinking is your hidden advantage.

It helps you connect the dots, anticipate waves, and lead from deep understanding — not reaction.

Imagine being able to test ideas, policies, or business models before investing time, money, or reputation.

Imagine an incubator for smart decisions.

That's what we're building with each model like this:

- A crystal ball powered by science.
- A launchpad for truly transformative solutions.

If what you do creates impact, do it with vision.

If you lead,
lead with awareness.

And if you dream of shaping a better future, do it with systems thinking.

#### References

A CONCEPTUAL MODEL FOR UNDERSTANDING RAINFALLVARIABILITY IN THE WEST AFRICAN SAHEL ON INTERANNUAL AND INTERDECADAL TIMESCALES [Publicación periódica] / aut. GRIST S.E. NICHOLSON* and J.P.. - 2 February 2001. - Correspondence to: Department of Meteorology, Florida State University, Tallahassee, FL 32306, USA..

Climate Change and Variability in the Sahel Region:Impacts and Adaptation Strategies in the Agricultural Sector [Publicación periódica] / aut. Serigne Tacko Kandji1 Louis Verchot1, Jens Mackensen2.

Desertification In The Sahel [Publicación periódica]. -

http://oceanworld.tamu.edu/resources/environment-book/desertificationinsahel.html

Distance vs. Time Lessons With the Motion Detector 1 [Publicación periódica] / aut. Fisher Diana M. //
Lessons in Mathematics: A Dynamic Approach. - 2001-2006.

**Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction** [Publicación periódica] / aut. Ning Zeng J. David Neelin, K.M. Lau, Compton J. Tucker. - 19 Noviembre de 1999. - www.sciencemang.org.

Interactions between dust and [Publicación periódica] / aut. Andrea Sealy ASP/CGD. - April 10th, 2008.

Mechanisms of 21st Century Changes in Sahel Precipitation in the CMIP3 Climate Models [Publicación periódica] / aut. Sobel Michela Biasutti and Adam. - Proposal submitted to U.S. CLIVAR DRought In COupled Model Project (DRICOMP)..

Modeling the Tragedy of Sahel [Publicación periódica] / aut. Saeed Khalid.

**Modelling Migration in the Sahel: An alternative to cost-benefit analysis** [Publicación periódica] / aut. BogdanWerth1 Scott Moss1, Gina Ziervogel2 y 3 Thomas E. Downing3.

**Using Remote Sensing to Model Carbon Source/Sink Dynamics in the Sahel** [Publicación periódica] / aut. J.W. Seaquista L. Ardöb, and L. Olssonc. - aGlobal and Environmental Change Centre & Department of Geography, McGill University, 805 Sherbrooke St. W.,.